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We investigate the plane flow of a viscous fluid layer plane flow on the surface of a cylinder rotating with a 

constant angular velocity with account for inertia forces and the acceleration of gravity. 

In [ 1, 2 ] equations were obtained for the evolution of a thin fluid layer on a rather slowly rotating cylinder 

without account for inertia forces. In [1, 3 ] experimental investigations were carried out. In [2 ] a theorem on the 

existence and uniqueness of a stationary solution was proved for the case of a small gravity effect. In [4 ] a 

qualitative investigation of the forms of equilibrium of plane layers was carried out without account for gravity 

forces. 

Below, we apply a direct method for solving a nonstationary problem. We obtain and analyze results of 

calculations for flows with and without the effect of gravity. In the process of evolution, periodic disturbances 

develop on a free surface in a gravity field, the number of local extrema and the maximum value of the free surface 

radius grow, the uniformity of their distribution over the cylinder circumference is disrupted, individual maxima 

increase up to values at which the process of the computations is terminated. The form of the free surface and the 

intervals of the values of the angle within which the maximally growing disturbances are localized agree with [1, 

3 ]. An analysis of the numerical solution of the equations in [1, 2 ] showed that in those works the researchers did 

not observe the development of wave disturbances over the cylinder circumference due to neglect of nonlinear terms. 

1. It is convenient to consider a plane flow of a viscous fluid in a relative coordinate system O, ~/, ~o fixed 

in the cylinder. The Navier-Stokes equations are augmented with an equation for the unknown surface, boundary 

conditions of absence of slip at the cylinder surface r/= 1, absence of viscous interaction with the ambient medium, 

and continuity of normal stresses on the free surface r /= h(~o, r), the condition of flow periodicity in the angular 

coordinate, and initial conditions. The initial-boundary value problem involves three dimensionless parameters: the 
Reynolds, Froude, and Weber numbers 
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pRom 0 ROe) 0 P R oo9 0 

Re - /x Fr - We - . g cr 

where R 0 is the cylinder radius; o) 0 is the angular velocity of the cylinder; p, #, and a are the density and coefficients 

of dynamic viscosity aod the surface tension of the fluid; g is the acceleration of gravity. In the case of a fast rotation 

Re >> 1, Fr >> 1, and We >> 1. In this case the relative change in the fluid flow in the transverse direction is much 

smaller than in the radial  one, the radial velocity component is much smaller than the transverse velocity 

component, and the relative thickness of the layer is much smaller than the disturbance wavelength. This makes 
it possible to obtain equations and boundary conditions in a first approximation: 
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Prl = (1 + o9)2r/; (2) 

(r/O n + (r/co)~o = 0 ; (3) 

r/=h(~o,T), h~+ogh~=v; (4) 

z /=  1, v = 0 ;  (5) 

r / =  1, o 9 = 0 ;  (6) 

1 ( 1 h~~176 ) 
r/ =h(7 : , ,  T), ~ h h 2 = p - pa' 

(7) 

, 7 = h ( r  ogv=0; (8) 

h@, T) = h(~o + 2~, O, 

v (~o, r) = v (~o + 2x, r), 

o9 @ ,  r) = o9 (~o + 2 ~ ,  r), 

p (~o , O = p Go + 2~ , r); 
(9) 

=0 ,  h = h  o(~o), o9=o9o(S~ v = v  0(~o). (10) 

Here o9 -- w/r/ - 1 is the relative angular velocity; v and w are the radial and peripheral velocities; p and Pa are the 
pressures in the layer and in the undisturbed surrounding medium. 

2. Let us make use of one step of the direct method. Integration of Eqs. (1 ) - (3 )  over t / f rom r/--- 1 to r /= 
h(T, T) yields the relations 

~ h h Oh 
r/2ogdr/ + + r12o92dzl + 2 f r/vdr/ + f r/wodr/ = p (h ,  ~ ,  r) ~ - 

0 l :  1 1 1 1 

o h ( h 2 r D  1 (  h ) 
Oq9 f pdr / -  2 F  c ~  ho9lT=h--Oog/Orllrl = 1 -  f ogdrl ; 

1 I 

(11) 

h 
p = p ( h ,  W, T ) -  f r/(1 +o9) 2dr/ ;  (12) 

h 
r/v -- - f (r/~o), dr/. (13) 

i 

With the aid of substitution of variables, the flow region is transformed into a circle 

r  0_<~_<1, ~ ( ~ , T ) = h @ , r  04) 

where ~ --- 0 corresponds to the cylinder surface and ~ = 1 to the free surface of the layer. Let us assume that the 
dependence of the relative angular velocity o9 on the variable ~, which satisfies conditions (6) and (8), has the form 
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1 ) (15) w(~,  T,  v ) = - T ( T ,  T)~ 1 - - ~  , 

where T( T, v) is a function that is periodic in ~o and that requires determination. Substitution of Eq. (15) into Eq. 
(13) permits one to obtain the formula 

4 
tlv= ~ A n ( T ,  6 ,  T~, 6r (16) 

n=2 

A 2= ( -  rd~o +dry,)~2,  A 3 = ( ( 1 - d )  T c 3 9 + d ( 2 d -  1) T~o/2)/3 , 

A 4 = (dTd~, - d2Tg/2) /4 .  

From relation (12) we can derive a formula for the pressure distribution in the layer: 

6 
P(~, T, 7:)=p(h, ~o, T)+ ~, bn~ n, 

rt=0 

(17) 

where 

d 2 7"3 Tzd 
b o = - d - - ~ - + - ~ - ( 1 6 + 5 d ) -  (16+  l ld)  b 1 = d  - ~  , , 

? _ _  b 2 -  2 Td b 3 = - ( 1 - 2 d )  + T26 
' 3 ' 

b 4 = (Td 2 -- T2d (1 -- 6) ) /4 ,  

b 5 = TXd (1 - 4c3)/20, b 6 = T2c32/24. 

Integral relation (11) with allowance for Eq. (17) is transformed to 

2d~, 6~,f ) 
60 d e+d,,oe~o- 1 + d  + 

r ,  = uc~ + VT~ - We (1 + d) 2 E 0 (3) 

+ 30 cos (T + r) (2 + d) 10T (6 - 3d - d2), 

Fr E o (d) Re d 2 E o (d) 

E 0 (c3) = 20 + 25d + 9c~ 2", U (c3 , 7") = T2U2 (6) + TU 1 (3) + U 0 (c3) ; 

1 [ 1 (336 + 553a + 3862) - V(cd ,  T)  = T V  1 (c5) + V O(d);  U 2 ( d )  = d E  0(c3) 

(4 + 5c3) 1 - 12 (1 + d) (20 + 50d + 2762) ; U 1 (c3) = (40 + 50d)/E o (d) ; 

111 U o ( c 3 ) = - 6 0 ( 1  +cd) /E o(c3); V 1 ( 3 ) = ~  ( 3 3 6 - 4 9 c 5 - 3 4 6 2  ) -  

(8 + 5a) ] 
- 24(1 + 6 ) ( 2 0 + 5 0 d + 2 7 d  2) ; V o ( d ) = c S ( 5 0 + 2 5 d ) / E  o(c3). 

The equation for determining the unknown free surface has the form 

(18) 
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TABLE 1. Dependence of the Characteristics of Layer Disintegration on the Parameters Re, Fr, and We 

wO, rps l~e I Pr 

17.7 2.5 

21.2 3.6 

31.8 8.2 

53.0 22.6 

84.0 58.0 

169.7 231.8 

5 

6 

9 

15 

24 

48 

W e  Z'p 

277.6 31.53 

399.7 20.66 

899.4 8.52 

2498.0 3.53 

6396.0 2.17 

25580.0 1.93 

rtma x Op 

16 2.80 

17 3.37 

22 5.48 

33 5.87 

38 5.21 

44 2.00 

DO 

2.0-2.9 

2.9-4.0 

5 .2 -5 .7  

2.9-3.5, 5 .2 -5 .5  

1.4-1.8; 4 .9-5 .4  

1.6-2;.1; 4.6-5.1 

~ = H (~) Tr + R (~, T) ~ ,  (19) 

H ( 5 ) = 3 ( 8 + 5 r  T ( 4 + 5 d )  
24(1 + 6 ) '  R ( 5 ,  T) = 12(1 + 5 ) "  

System of equations (18) and (19) is augmented with the condition of periodicity in the angular coordinate 

and also with periodic initial conditions: 

3 ( e ,  z) = 5 ( e  + 2zc, ~), T ( T ,  z) = T(~o + 2.re, ~); (20) 

6(e,0)=6 0(e), T(e,0)=T0(e). (21) 

3. The solution of initial-boundary value problem (18)-(21) is sought by the method of straight lines in 

the region 0 _< e -< 2~, T > 0. The flow region is subdivided by N rays: e = en = nAe, n = 1, 2 . . . . .  N - 1 (A T 
= 2~/N). Derivatives with respect to e on reference rays are represented by finite-difference relations, and Eqs. 

(18) and (19) are reduced to a system of ordinary differential equations: 

dT n 
dz - f l  [T, 5n, (5~) n, (3~r ( 5 ~ )  n, T n, (T~o) n ], (22) 

dC3 n (23) 
d~ = f2 [Sn, (6~,)n, Tn,  (T~)n ], 

where the functions fl and f2 represent the right-hand sides of Eqs. (18) and (19) after discretization over e- 

Conditions (20) and (21) require the compliance with the equalities 

O n (T) = 6N+ n (T), T n (T) = TN+ n (z') ; (24) 

o 0 (25) 
5 n(O) =c3 n ,  T n(O) = T n.  

System of ordinary differential equations (22) and (23) with auxiliary conditions (24) and (25) is 
integrated by the Runge-Kutta method with a constant step using formulas of the fourth order of accuracy. The 
value of N was varied and amounted to 180, 360, 720, the integration step in time was varied from n/2000 to 
n/200. The accuracy of the computations was controlled by the condition of fluid mass conservation in the layer: 

1 27r 
M=~f [h 2(e,T)-l]de. 

0 
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Fig. 1. Shape of a free surface at different instants of time. 

Computat ions were terminated when the absolute max imum of the layer  thickness at ta ined five max imum 

values of it at the initial instant  of time; the corresponding time value is denoted everywhere below by T o . 

4. The  numerical  solution of the problem was carried out under  conditions corresponding to the exper iments  

in [3 ]: the fluids used were aqueous solutions of glycerin at 20~ the cylinder radius was equal to 1.23, 2.5, and 

3.5 cm; angular  velocities ranged from 3 to 200 rps. 

Suppose that  at the initial instant  of t ime the layer  has a constant thickness c3 ~ and  the cyl inder  moves as 

an entity. Due to the instability, one max imum and one minimum appear  on the free surface. This  is followed by  

the development of other  small-ampli tude disturbances distr ibuted uni formly  over the cylinder surface. At the initial 

stage of evolution the number  of local ext rema and the max imum value  of the free surface radius increase, then 

the uniformity of their  distribution is disrupted, and individual maxima grow further.  The  rea r rangement  of the 

flow occurs. Figure la  and  b shows the shape of the free surface of the layer  in a fixed coordinate sys tem r = ~/, 0 

= 50 - ~: at 6 o = 0.10, Re = 17.7, Fr = 2.52, We = 277.7; in Fig. l a  line 1 corresponds to T = 0, line 2 to T = Jr, and 

line 3 to T = 7Jr; in Fig. lb: 1) T = 97c; 2) T = T o = 31.53. The  condition for the terminat ion of computat ions is 

determined by the inequality ~max >- 5~~ 

In Fig. lc curves for v(~, 0) are given: 1) ~ = 2.7r; 2) T -- 9Jr. In Table  1 the values of Vp, the max imum 

number  of dis turbances nma x developed at t ime T o, the angle Op corresponding to the largest  value of the free surface 

radius at t ime Tp, and the intervals of 0 values with the maximal ly  growing disturbances are presented as functions 

of the paramete rs  Re, Fr, and We. Calculations demons t ra ted  the existence of two subintervals: Db = {5~/8 

< 0 < 5 ~ / 4 }  and Db' = {3z/2  < 0 < 2z}, in full conformity with the experiment  of [3 ]. 
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Fig. 2. Dependence of ~-p on the form and amplitude of initial dis turbances at 

Re = 31.8, Fr  = 8.2, We = 899.4. 1) k = 4; 2) 8. 

Fig. 3. Bulges on a free surface at Re = 11.6, Fr  = 0.40, We = 44.4. a) r = Jr; 

b) 3Jr/2; c) 7n/2.  

If the initial profile of the free surface of the layer rotating as a solid body is specified in the form 

60 (9o )=0 .1  + a  0s inkgo,  T 0 ( 9 o ) = 0 ,  k =  1,  2 . . . . .  

and the dimensionless parameters of the problem are equal to Re --- 31.8, F r  = 8.15, and We = 899.4, then initial 

disturbances develop in the first stage. Next,  new disturbances of smaller amplitude appear between the points of 

a maximum on the free surface. The  amplitude of secondary disturbances remains small, the instability in the layer 

develops due to the growth of one of the main maxima on the free surface according to the above-outlined scenario. 

In Fig. 2 the dependence of the time rp on the amplitude of initial disturbances ao is given for k = 4 (curve 1) and 

k = 8 (curve 2). 

Figure 3 demonstrates the layer at three instants of time with an initial disturbance of the form 

50(9o) = 0 . 1  - 0.05 sin 90 , T O (90) = 0 .  

The dimensionless parameters are Re = 11.6, Fr = 0.40, and We = 44.4. On the free surface there are burrs or 

bulges recorded experimentally [1, 3 ]. 

In the case where the acceleration of gravity is ignored, the initial layer of constant thickness is preserved. 

A disturbed layer  disintegrates due to the growth of the initial disturbances, with the uniformity in the location of 

the local extrema of both the basic and secondary disturbances being preserved up to the instant of termination of 

the computations rp. 

Conclusion. Account for the nonlinear interaction of disturbances makes it possible to refine the mechanism 

underlying the disintegration of a fluid layer on the surface of a rotating cylinder. 

N O T A T I O N  

O, r, 0, fixed cylindrical coordinate system; O, 9O, to, relative coordinate system fixed in the cylinder; fr = 

Of/Or, f~ = Of/Or 1, f~ = Of/09o, f ~  = 02f/09o 2, f ~  = 03f/09o 3, derivatives; zp, dimensionless time in which the 

absolute maximum of the layer  thickness attains five maximum values of it at the initial instant of time (the instant 

of termination of the computations). 
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